SYNTHESIS AND STEREOISOMERISM OF THE DECAHYDROQUINOLINE SERIES N-OXIDES 6.* X-RAY DIFFRACTION STUDY OF 1,2e-DIMETHYL-4a-ETHYNYL-4e-HYDROXY-trans-DECAHYDROQUINOLINE N-OXIDE HYDROBROMIDE

A. A. Akhrem, A. I. Verenich, N. M. Galitskii, V. A. Tereshko, A. A. Govorova, L. I. Ukhova, and N. F. Marchenko

The results of x-ray diffraction analysis on 1,2e-dimethyl-4a-ethynyl-4e-hydroxy-trans-decahydroquinoline N-oxide hydrobromide corroborated the orientation of the substituents at the nitrogen atom that was determined previously from PMR data.

In an earlier report in this series [2] we established the orientation of the substituents at the nitrogen atom of the epimeric N-oxides of the 1,2-dimethyl-4a-ethynyl(vinylethynyl, vinyl, acetyl)-4-hydroxy-trans-decahydroquinolines by means of the PMR method, making use of the fact that the chemical shifts of the $3-H_a$ and $3-H_e$ protons depend on the orientation of the N-O bond and the diamagnetic anisotropy of the ring C-C and C-H bonds.

In order to confirm that the orientation of the substituents at the nitrogen atom of the epimeric N-oxides was determined accurately, we have carried out an x-ray diffraction analysis of the hydrobromide crystals obtained from 1,2e-dimethyl-4a-ethynyl-4e-hydroxy-trans-decahydroquinoline N-oxide (I), whose N-O bond was previously assigned an axial orientation on the basis of PMR spectral data.[†]

The structure of N-oxide I ascertained from x-ray diffraction data is shown in Fig. 1, which also gives valence bond lengths. The standard deviation of the lengths was 0.008-0.009 Å for N-O, N-C, and O-C, and 0.01 Å for C-C. Valence angles are shown in Table 1 and torsion angles in Table 2.

The rings of the molecule were in a chair conformation, with the N-O bond having an axial and the N-CH₃ bond an equatorial orientation. The angle between the fused rings (i.e., the angle between the plane drawn by the least-square method through $C_{(2)}$, $C_{(3)}$, $C_{(10)}$, and $C_{(9)}$ (plane P_1) to an accuracy of at least 0.01 Å, and the plane formed by the atoms $C_{(6)}$, $C_{(7)}$, $C_{(9)}$, and $C_{(10)}$ (plane P_2), made to an accuracy of at least 0.03 Å) was 176.8°, i.e., close to the ideal value of 180°. The $C_{(4)}$ and $N_{(1)}$ atoms deviated from the plane P_1 by distances of 0.70 Å and -0.66 Å respectively. In this case the dihedral angles between the peri- and central planes were 50.8° for the first atom and 49.4° for the second atom. Atoms $C_{(5)}$ and $C_{(8)}$ deviated from plane P_2 by 0.66 Å and -0.68 Å respectively. The dihedral angles between the peri- and central planes were similar to those found in the adjacent ring, having values of 50.3° for atom $C_{(5)}$ and 49.6° for atom $C_{(8)}$.

^{*}For Communication 5, see [1].

 $[\]dagger$ In the case of the $N_{(1)}$ -epimeric N-oxide, no crystals suitable for x-ray diffraction analysis were obtained.

Institute of Bioorganic Chemistry, Belorussian Academy of Sciences, Minsk 220067. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 82-85, January, 1993. Original article submitted December 13, 1991.

TABLE 1. Valence Angles $\boldsymbol{\omega}$ (deg.) in the N-Oxide I Molecule

Angle	ω	Angle	ω	
$N_{(1)}-N_{(1)}-C_{(2)}$	105,7(5)	O(1)—N(1)—C(9)	108,0(5)	
$O_{(1)}-N_{(1)}-C_{(14)}$	108,8(5)	$C_{(2)}$ — $N_{(1)}$ — $C_{(9)}$	111,7(5)	
$C_{(2)} - N_{(1)} - C_{(14)}$	111,2(6)	$C_{(9)}$ — $N_{(1)}$ — $C_{(14)}$	111,1(5)	
$C(4) - O(2) - H(O_2)$	99,9(5)	$N_{(1)}-C_{(2)}-C_{(3)}$	110,3(6)	
$V_{(1)}-C_{(2)}-C_{(13)}$	112,7(6)	$C_{(3)}-C_{(2)}-C_{(13)}$	112,4(7)	
$C_{(2)}-C_{(3)}-C_{(4)}$	114,5(6)	$O_{(2)}-C_{(4)}-C_{(3)}$	110,2(6)	
$C_{(2)} - C_{(4)} - C_{(10)}$	111,4(6)	$O_{(2)}-C_{(4)}-C_{(11)}$	105,5(6)	
$C_{(3)}-C_{(4)}-C_{(10)}$	108,5(6)	$C_{(3)}-C_{(4)}-C_{(11)}$	110,3(6)	
$C_{(10)} + C_{(4)} + C_{(11)}$	110,9(6)	$C_{(6)}-C_{(5)}-C_{(10)}$	112,2(7)	
$C_{(5)}-C_{(6)}-C_{(7)}$	108,8(8)	$C_{(6)}-C_{(7)}-C_{(8)}$	111,9(8)	
$C_{(7)}$ $C_{(8)}$ $C_{(9)}$	109,4(7)	$N_{(1)}-C_{(9)}-C_{(8)}$	110,7(6)	
V(1)C(9)C(10)	110,8(5)	$C_{(8)}-C_{(9)}-C_{(10)}$	113,1(6)	
$C_{(4)}$ $C_{(10)}$ $C_{(5)}$	112,2(6)	$C_{(4)}-C_{(10)}-C_{(9)}$	110,5(6)	
$C_{(5)} - C_{(10)} - C_{(9)}$	111,6(6)	$C_{(1)}-C_{(11)}-C_{(12)}$	178,9(8)	

TABLE 2. Torsion Angles τ (deg) in the N-Oxide I Molecule

Angle	τ	Angle	τ	
$O_{(1)}-N_{(1)}-C_{(2)}-C_{(13)}$	-62,1(7)	$O_{(1)}$ — $N_{(1)}$ — $C_{(2)}$ — $C_{(3)}$	64,4(7)	
$C_{(9)}-N_{(1)}-C_{(2)}-C_{(3)}$	-52,9(7)	$C_{(9)}$ — $N_{(1)}$ — $C_{(2)}$ — $C_{(13)}$	-179,4(6)	
$C_{(14)}-N_{(1)}-C_{(2)}-C_{(3)}$	-177,7(6)	$C_{(14)}$ — $N_{(1)}$ — $C_{(2)}$ — $C_{(13)}$	55,8(8)	
$O_{(1)}-N_{(1)}-C_{(9)}-C_{(8)}$	65,9(7)	$O_{(1)}-N_{(1)}-C_{(9)}-C_{(10)}$	-60,4(7)	
$C_{(2)}-N_{(1)}-C_{(9)}-C_{(8)}$	-178,2(6)	$C_{(2)}-N_{(1)}-C_{(9)}-C_{(10)}$	55,5(7)	
$C_{(14)}-N_{(1)}-C_{(9)}-C_{(8)}$	-53,4(8)	$C_{(14)}-N_{(1)}-C_{(9)}-C_{(10)}$	-179,7(6)	
$\Pi_{(O2)} - \Omega_{(2)} - C_{(4)} - C_{(3)}$	62,1(7)	$H(O_2)$ — $O(2)$ — $C(4)$ — $C(10)$	-58,4(7)	
$H(O_2)-O(2)-C(4)-C(11)$	-178,8(5)	$C_{(2)}-C_{(3)}-C_{(4)}-C_{(11)}$	64,6(8)	
$N_{(1)}-C_{(2)}-C_{(3)}-C_{(4)}$	55,2(8)	$C_{(13)}-C_{(2)}-C_{(3)}-C_{(4)}$	-178,2(7)	
$C_{(2)}-C_{(3)}-C_{(4)}-O_{(2)}$	-179,3(6)	$C_{(2)}-C_{(3)}-C_{(4)}-C_{(10)}$	-57,0(8)	
$O_{(2)}-C_{(4)}-C_{(10)}-C_{(5)}$	-56,2(8)	$O_{(2)}-C_{(4)}-C_{(10)}-C_{(9)}$	178,6(5)	
$C_{(3)}-C_{(4)}-C_{(10)}-C_{(5)}$	-177,8(6)	$C_{(3)}-C_{(4)}-C_{(10)}-C_{(9)}$	57,0(7)	
$C_{(11)}-C_{(4)}-C_{(10)}-C_{(5)}$	61,0(8)	$C_{(11)}-C_{(4)}-C_{(10)}-C_{(9)}$	-64,3(7)	
$O_{(2)}-C_{(4)}-C_{(11)}-C_{(12)}$	89,0(9)	$C_{(3)}-C_{(4)}-C_{(11)}-C_{(12)}$	-152,0(9)	
$C_{(10)}-C_{(5)}-C_{(6)}-C_{(7)}$	57,0(9)	$C_{(10)}-C_{(4)}-C_{(11)}-C_{(12)}$	-31,8(9)	
$C_{(6)}-C_{(5)}-C_{(10)}-C_{(4)}$	-177,8(7)	$C_{(6)}-C_{(5)}-C_{(10)}-C_{(9)}$	-53,2(9)	
$C_{(5)}-C_{(6)}-C_{(7)}-C_{(8)}$	-59,5(9)	$C_{(6)}-C_{(7)}-C_{(8)}-C_{(9)}$	58,0(9)	
$C_{(7)}-C_{(8)}-C_{(9)}-N_{(1)}$	-178,1(6)	$C_{(7)}-C_{(8)}-C_{(9)}-C_{(10)}$	-53,1(8)	
$N_{(1)}-C_{(9)}-C_{(10)}-C_{(4)}$	-57,6(7)	$N_{(1)}-C_{(9)}-C_{(10)}-C_{(5)}$	176,8(6)	
$C_{(8)}-C_{(9)}-C_{(10)}-C_{(4)}$	177,4(6)	$C_{(8)}-C_{(9)}-C_{(10)}-C_{(5)}$	51,9(8)	

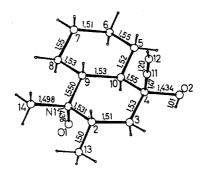


Fig. 1. Structure of N-oxide I molecule. Bond lengths in $\hbox{\normalfont\AA}$.

TABLE 3. Atomic Coordinates (×104) for N-Oxide I Hydrobromide

Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c
Br	2267(1)	5462(1)	5907(2)	C ₍₈₎	-698(6)	9429(11)	1823(6)
N ₍₁₎	-426(4)	6897(8)	3036(4)	C ₍₉₎	-22(5)	8692(9)	2600(5)
$O_{(1)}$	-417(4)	5522(7)	2297(4)	C(10)	1014(5)	8420(9)	2245(5)
$O_{(2)}$	2640(4)	7448(7)	2754(4)	C(11)	1745(5)	9152(11)	3829(5)
C ₍₂₎	223(5)	6161(11)	3838(5)	C ₍₁₂₎	1805(6)	10318(12)	4434(6)
C ₍₃₎	1247(6)	5993(9)	3488(6)	C(13)	-149(7)	4409(12)	4264(7)
C ₍₄₎	1671(5)	7756(10)	3077(5)	C(14)	-1441(6)	7148(12)	3380(6)
C ₍₅₎	1404(6)	10139(12)	1764(7)	H(O2)	2517(0)	6511(0)	2240(0)
C ₍₆₎	728(6)	10846(11)	958(10)	H _(Br)	1341(0)	4671 (0)	5839(0)
C ₍₇₎	-256(8)	11190(11)	1379(6)			1	

In summary, x-ray diffraction data corroborated the findings of our previous works regarding the orientation of the substituents at the nitrogen atom, the substituents at the $C_{(2)}$ and $C_{(4)}$ positions, and the fusion and conformation of the rings [2-4] for the axial N-oxide of 1,2e-dimethyl-4a-ethynyl-4e-hydroxy-trans-decahydroquinoline.

EXPERIMENTAL

The synthesis of N-oxide I is described in [5]. The hydrobromide obtained from it $(C_{13}H_{22}NO_2Br)$ had a melting point of 187-188°C. Crystals of the hydrobromide were grown from ethyl alcohol solution.

Orthorhombic crystals, at 19°C a = 13.860(6) Å, b = 7.310(3) Å, c = 13.512(5) Å (Z = 4), sp. gr. Pca2₁.

Elementary nuclear parameters and the intensity of 1265 independent reflections, of which 1227 with $F > 2.5 \sigma_F$ were used to interpret and clarify the structure, were measured with a NICOLET R3m 4-circle diffractometer (USA), using the standard technique (MoK α -emission, graphite monochromator, $\theta/2\theta$ scanning, $2\theta_{max} = 64^{\circ}$). An empirical correction was made for absorption.

The structure was resolved by direct method using a Shelx 84 program complex (Rev. 4.1). Coordinates for nonhydrogen atoms were refined using the least-square method in block-diagonal isotropic, then anisotropic approximation. The $H_{(02)}$ atom was identified by Fourier differential synthesis. It was not possible to determine unambiguously the coordinates of the $H_{(Br)}$ hydrogen at the bromine atom. In differential synthesis three peaks appeared at a distance of about 1.3 Å from the Br atom. The coordinates of one of these peaks were used in the calculations as the $H_{(Br)}$ coordinates. The position of the other hydrogen atoms was calculated geometrically. All the hydrogen atoms were used in the F_{calc} calculation with fixed coordinates and isotropic temperature factors. At the last refinement stage the standard R-factor value was 0.040. Atomic coordinates for N-oxide I hydrobromide are shown in Table 3 (hydrogen atoms whose coordinates were calculated are omitted; they were used in the calculation with F_{iso} values of 6 Å²). All calculations were performed using a NOVA 3 minicomputer.

REFERENCES

- 1. A. A. Akhrem, L. I. Ukhova, M. F. Marchenko, and V. M. Gorul'ko, Khim. Geterotsikl. Soedin., No. 10, 1378 (1976).
- 2. A. A. Akhrem, V. M. Gorul'ko, L. I. Ukhova, M. F. Marchenko, and A. P. Marochkin, Khim. Geterotsikl. Soedin., No. 10, 1372 (1976).
- 3. V. G. Zaikin, N. S. Vulfson, V. I. Zaretskii, A. A. Bakaev, A. A. Akhrem, L. I. Ukhova, and N. F. Uskova, Org. Mass. Spectrom., 2, 1257 (1969).
- 4. V. S. Bogdanov, L. I. Ukhova, N. F. Uskova, A. N. Sergeeva, A. P. Marochkin, A. M. Moiseenkov, and A. A. Akhrem, Khim. Geterotsikl. Soedin., No. 8, 1078 (1973).
- 5. A. A. Akhrem, L. I. Ukhova, and N. F. Sakovich, Izv. Akad. Nauk SSSR, Ser. Khim., No. 5, 838 (1963).